Multiple-precision Zero-finding Methods and the Complexity of Elementary Function Evaluation1

نویسنده

  • Richard P Brent
چکیده

We consider methods for finding high-precision approximations to simple zeros of smooth functions. As an application, we give fast methods for evaluating the elementary functions log(x), exp(x), sin(x) etc. to high precision. For example, if x is a positive floating-point number with an n-bit fraction, then (under rather weak assumptions) an n-bit approximation to log(x) or exp(x) may be computed in time asymptotically equal to 13M(n) log2 n as n → ∞, where M(n) is the time required to multiply floating-point numbers with n-bit fractions. Similar results are given for the other elementary functions, and some analogies with operations on formal power series are mentioned.

منابع مشابه

Multiple-precision zero-finding methods and the complexity of elementary function evaluation

We consider methods for finding high-precision approximations to simple zeros of .smooth functions. As an application, we give fast methods for evaluating the elementary functions log(x), exp(x), sin(x) etc. to high precision. For example, if x is a positive floating-point number with an n-bit fraction, then (under rather weak assumptions) an n-bit approximation to log(x) or exp(x) may be compu...

متن کامل

The complexity of multiple-precision arithmetic

In studying the complexity of iterative processes it is usually assumed that the arithmetic operations of addition, multiplication, and division can be performed in certain constant times. This assumption is invalid if the precision required increases as the computation proceeds. We give upper and lower bounds on the number of single-precision operations required to perform various multiple-pre...

متن کامل

THIRD-ORDER AND FOURTH-ORDER ITERATIVE METHODS FREE FROM SECOND DERIVATIVE FOR FINDING MULTIPLE ROOTS OF NONLINEAR EQUATIONS

In this paper, we present two new families of third-order and fourth-order methods for finding multiple roots of nonlinear equations. Each of them requires one evaluation of the function and two of its first derivative per iteration. Several numerical examples are given to illustrate the performance of the presented methods.    

متن کامل

Reliability optimization problems with multiple constraints under fuzziness

In reliability optimization problems diverse situation occurs due to which it is not always possible to get relevant precision in system reliability. The imprecision in data can often be represented by triangular fuzzy numbers. In this manuscript, we have considered different fuzzy environment for reliability optimization problem of redundancy. We formulate a redundancy allocation problem for a...

متن کامل

A Comparison of Thin Plate and Spherical Splines with Multiple Regression

Thin plate and spherical splines are nonparametric methods suitable for spatial data analysis. Thin plate splines acquire efficient practical and high precision solutions in spatial interpolations. Two components in the model fitting is considered: spatial deviations of data and the model roughness. On the other hand, in parametric regression, the relationship between explanatory and response v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1976